
The Analytics of Information and
Uncertainty

Answers to Exercises and Excursions

Chapter 1: Elements of Decision Under Uncertainty

1.2 The Probability Distribution

Solution 1.2.1. The estimate of the probability of rain, prior to receiving the news,

is 2/3. Consistency of this prior estimate with posterior beliefs, after arrival of new

information, requires that:

50%(1.0) + 30%(0) + 20%(0.5) =
2

3

But this equation is not true. His current beliefs about the chance of rain are not

consistent with his beliefs about what the arriving information will reveal.

Solution 1.2.2.

(A) His best estimate is
1

3
(1) +

1

3
(0.5) +

1

3
(0) =

1

2
.

(B) His best estimate obviously remains 1/2. But his confidence that the true p

actually is 1/2 has now increased, indeed that confidence is as high as it can possibly

be.

(C) Once again his best estimate, for the purposes of a bet on the next toss of the

coin, is p = 1/2. But he can have no confidence at all in that estimate. Indeed, since

he has learned that the coin is either two headed or two tailed, he is absolutely sure

that the true p is either 1 or 0, both equally likely; the true p cannot be 1/2.
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1.4 Expected Utility Rule

Solution 1.4.1. Since he is maximizing here over his actions, U may be given an

“ordinal” interpretation. Thus he could equally well maximize:

Û ≡ lnU = π1 ln(1 + c1) + π2 ln(1 + c2)

This is the equivalent of maximizing expected utility if the “cardinal” utility function

has the form:

v(c) = ln(1 + c).

So in this case the individual’s choices would be consistent with those of a von Neu-

mann - Morgenstern expected-utility maximizer.

Solution 1.4.2.

(A) A typical indifference curve is given by

u = π1c
1/2
1 + π2c

1/2

The indifference curve bends toward the origin because it is convex:

c2 = (u− πc1/21 )2

has a positive second derivative. The indifference curve touches the axis because for

any u, one can take c1 = 0, c2 = (u/π2)
2, then (c1, c2) will be on the indifference

curve with utility u and at the same time on the y-axis. Similarly, choosing c1 =

(u/π1)
2, c2 = 0, we will get a point (c1, c2) on the indifference curve and on the x-axis.

(B) Suppose v(·) is strictly concave. Take any (c1, c2), (c
′
1, c
′
2) such that

U = π1v(c1) + π2v(c2) = πv(c′1) + (1− π)v(c′2),
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where 0 < π < 1. We have

U(λc1 + (1− λ)c′1, λc2 + (1− λ)c′2)

= πv(λc1 + (1− λ)c′1) + (1− π)v(λc2 + (1− λ)c′2)

> π(λv(c1) + (1− λ)v(c′1)) + (1− π)(λv(c2) + (1− λ)v(c′2))

= λ(πv(c1) + (1− π)v(c2)) + (1− λ)(πv(c′1) + (1− π)v(c′2))

= U,

where the inequality follows from strict concavity of v. Hence the convex combination

is strictly preferred to either one of the original bundles.

Solution 1.4.3.

(A) Let

l̂ =

(
c1, c2;

π1
π1 + π2

,
π2

π1 + π2

)
.

Then by the result for 2-outcome lottery

U(l̂) =
π1

π1 + π2
v(c1) +

π2
π1 + π2

v(c2).

Let v = π1
π1+π2

v(c1) + π2
π1+π2

v(c2). Then, using the fact that v(m) = 0 and v(M) = 1,

U(l∗(v)) = v(M)(
π1

π1 + π2
v(c1) +

π2
π1 + π2

v(c2)) + v(m)(1− π1
π1 + π2

v(c1)−
π2

π1 + π2
v(c2))

=
π1

π1 + π2
v(c1) +

π2
π1 + π2

v(c2)

= U(l̂).

As the two lotteries have the same expected utility, l̂ ∼ l∗(v).

(B) By (A) and the Independence Axiom, for any c3 ∈ C

(l̂, c3; 1− π3, π3) ∼ (l∗(v), c3; 1− π3, π3). (2)
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By definition, c3 ∼ l∗(v(c3)). Apply the Independence Axiom to this relation and the

lottery l∗(v), we get

(l∗(v), c3; 1− π3, π3) ∼ (l∗(v), l∗(v(c3)); 1− π3, π3).

(C) [Graph omitted.]

(D) The first is a compound lottery which simplifies to (c1, c2, c3, π1, π2, π3). The

second is a compound lottery which simplifies to

(M,m, (1− π3)v + π3v(c3), (1− π3)(1− v) + π3(1− v(c3))).

The claim then follows from (1− π3)v = (π1 + π2)v = π1v(c1) + π2v(c2).

In sum, we have shown that for an arbitrary 3-outcome lottery (c1, c2, c3; π1, π2, π3),

U(c1, c2, c3; π1, π2, π3) =
3∑
i=1

πiv(ci).

(E) As an induction hypothesis, suppose for any s-outcome lottery,

U(c1, ..., cs; π1, ..., πs) =
s∑
i=1

πiv(ci).

Given any s+ 1-outcome lottery (c1, ..., cs+1; π1, ..., πs+1), define

l̂ = (c1, ..., cs;
π1∑s
i=1 πi

, ...,
πs∑s
i=1

πs).

Define

v =
s∑
i=1

πi∑s
j=1 πj

v(ci).

Then the induction hypothesis will imply in a similar fashion

l̂ = l∗(v).

Now we can apply the same arguments through (B) to (D) to show the Expected

Utility Rule holds for any lottery with s+ 1-outcomes.
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1.5 Risk Aversion

Solution 1.5.1.

(A) As (i), (ii), (iv), (vi) each have a negative second derivative, these utility functions

are risk averse. Similarly, (iii) has a positive second derivative and this utility function

is risk loving. Also, (v) has a zero second derivative, this utility function is risk neutral.

(B) For c > a/2b, the first order derivative v′(c) becomes negative. Hence for suffi-

ciently large wealth, the less the better, which may be unrealistic.

Solution 1.5.2.

(A) Agent 1 is risk neutral so he maximizes expected payoff, hence he chooses G2.

For agent 2, we have

E[v2(G1)] = 21.9

E[v2(G2)] = 0.5(850)0.5 + 0.5(200)0.5 = 21.65

E[v2(G3)] = 15.81.

Hence he chooses G1.

For agent 3, we have

E[v3(G1)] = 230, 400.

E[v3(G2)] = 381, 250.

E[v3(G3)] = 500, 000.

Hence he will choose G3.

(B) Agent 1 only maximizes expected payoff hence he will not diversify.
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Let λi be the (positive) share allocated to Gi by agent i, i = 2, 3. A portfolio is then

(λ1, λ2), such that λ1 + λ2 ≤ 1. Agent i then solves

max
λ1,λ2

U2(λ1, λ2) ≡ max
λ1,λ2

E[vi(λ1G1 + λ2G2 + (1− λ1 − λ2)G3)].

As G2, G3 are perfectly correlated, agent 2’s expected utility from diversification is

U2(λ1, λ2) = 0.5(λ1480 + λ2850 + (1− λ1 − λ2)1000)1/2 + 0.5(λ1480 + λ2200)1/2.

Note that
∂U2

∂λ1

∣∣∣∣
(1,0)

< 0 <
∂U2

∂λ2

∣∣∣∣
(1,0)

.

When (λ1, λ2) = (1, 0), agent 2 is in possession of one share of G1 and no G2 or G3,

he can increase his expected utility by reducing his share of G1 and increasing in G2

(or G3). Hence, he will diversify.

Agent 3 is risk-loving, intuitively he will put all the eggs in a single basket. We can

use exactly the same argument as above to show that he will not diversify. With

U3(λ1, λ2) = 0.5 (λ1480 + λ2850 + (1− λ1 − λ2)1000)2 + 0.5 (λ1480 + λ2200)2 ,

we see that
∂U3

∂λ1

∣∣∣∣
(0,0)

< 0,
∂U3

∂λ2

∣∣∣∣
(0,0)

< 0,

which means that λ1 = λ2 = 0 is his optimal portfolio, i.e., he invests only in G3.

To conclude, the risk-averse agent is the only one that diversifies his portfolio.
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Solution 1.5.3.

(A) On the left-hand side we depict the gamble (120, 840; 5/6, 1/6) versus c = 240 for

sure. On the right-hand side we depict the gamble (0, 720; 5/6, 1/6) versus c = 120

for sure.

Figure 1: Ex 1.5.3(A)
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(B) On the left-hand side we depict the gamble (160, 880; 1/6, 5/6) versus c = 760 for

sure. On the right-hand side we depict the gamble (280, 1000; 1/6, 5/6) versus c = 880

for sure.

Figure 2: Ex 1.5.3(B)
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(C) He can accept any lottery whose expected value is at least v(500), which implies

very large gains and losses in our picture.

Figure 3: Ex 1.5.3(C)

Solution 1.5.4.

(A) Recall that −v′/v′′ = α + βc.

(i) With β = 0, rearrange to get

v′′α + v′ = 0.

Hence for some constant k,

v′α + v = M.

9



Writing v′ = dv/dc and rearrange again to obtain

dv

M − v
=
dc

α
.

Note that the left-hand side can be written as −d ln(k− v). Integrate both sides

to obtain

ln(M − v) = − c
α

+ lnN

for some constant N . Hence

M − v = Ne−c/α.

(ii) Rearrange to get

v′′βc+ v′ = 0.

Multiply each side by ck, where (k + 1)β = 1, we then have

v′′βck+1 + v′ck = 0.

The left-hand side can be written as (v′βck+1)′, hence after integrating both sides

we obtain

v′βck+1 = N

for some constant N . Now we can rearrange and integrate again to solve for v,

which will be the desired form.

(iii) Rearrange to get

v′′c+ v′ = 0

⇒ (v′c)′ = 0

⇒ v′c = N

⇒ v′ =
N

c

⇒ v = N ln c+M.
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(iv) Rearrange to get

v′′(α− c) + v′ = 0. (1)

Differentiate (1) with respect to c we get

v′′′(α− c) = 0

Hence v(c) is a quadratic polynomial, which is of the form v(c) = Nc2 +Kc+D.

Now substitute it into (1) to get 2Nα +K = 0, which is the desired equation.

(B) The utility function for case (i) is defined for all c ∈ R, for cases (ii) and (iii) it is

defined only for c > 0, and for case (iv) for 0 ≤ c ≤ α. Finally, N > 0 is equivalent to

c being a desirable good (the more the better), and every well-behaved utility function

should be increasing w.r.t. c.

Solution 1.5.5. Suppose you stake M dollars in a fair gamble where M ≤ 10000.

Figure 4: Ex 1.5.5

The gamble is of the form (−M,N ; p, 1− p), i.e., you lose M dollars with probability

p, gain N dollars with probability 1− p, and N, p are chosen such that

−Mp+N(1− p) = 0. (2)
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Then the prospect you are faced with will then be

(−20000−M,−20000 +N, p, 1− p).

Then the expected utility for choosing (M,N) will be

E[v(M,N)] = −Bp+ v(−20000 +N)(1− p)

Observe that for any fixed p the expected utility is increasing in N , and that by (2)

N is increasing in M . Hence the agent will choose M = 10000. Secondly, if N < 20000

then the agent will get −B for sure, hence he will choose N ≥ 20000. The optimal

N∗ is depicted in Figure 1.5.5.

Solution 1.5.6. Let I = [m1,M1]× [m2,M2] be the set of consequences, ∆(I) be the

space of lotteries over I. Let ≺I be a preference relation over I, ≺ be a preference

relation over ∆(I) that is consistent with ≺I , complete, continuous, and satisfies the

independence axiom. Consider the lottery

l(π) = ((M1,M2), (m1,m2);π, 1− π).

Now for each (a, b), define

v(a, b) = π

where

(a, b) ∼ l(π).

The rest of the argument proceeds in a similar way to that in the text. First we need

to show v(a, b) is well-defined. That is, π exists and that π1 > π2 implies l(π1) � l(π2),

which can be shown by applying continuity and the independence axiom. The second

step is to show v(a, b) induces the same preference relation as≺I , which follows directly

from the reference lottery technique.
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Solution 1.5.7. First we solve the indirect utility function

U(I) = max
a,b

a1/2b1/4

s.t.

Paa+ Pbb = I.

From the Lagrangian we can obtain the first order conditions:

a−1/2b1/4

2
= λPa

a1/2b−3/4

4
= λPb

Paa+ Pbb = I.

We can then solve the optimal a, b as a function of (I, Pa, Pb). Plugging a(I, Pa, Pb), b(I, Pa, Pb)

into v(a, b) to obtain

U(I, Pa, Pb) =
(2/3)1/2(1/3)1/4I3/4

P
1/2
a P

1/4
b

,

which is a strictly concave function of I.

(A) Since U(I) is strictly concave in I,

U(50, 1, 1) > 0.5U(1, 1, 1) + 0.5U(99, 1, 1).

(B) The individual exhibits risk aversion to income risks because his utility function

over income I is concave.

(C) Observe that

U(50, 64, 16) < 0.5U(50, 1, 16) + 0.5U(50, 81, 16).

Thus even though a 50:50 uncertainty of Pa = 1 or Pa = 64 has expected Pa = 41, he

prefers to take the price risk over a certain Pa = 50.
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The individual is risk averse toward income shocks but is risk loving toward price

shocks, as his indirect utility function is convex in prices. A person can exhibit risk

averse or risk loving attitude toward different parameters. Hence when we say a person

is risk averse, we should be more precise as to indicate the parameter(s) the person is

risk averse to.

Solution 1.5.8.

(A) Define c = E[c̃]. By Taylor expansion, for any c 6= c there exists a c∗ between c

and c such that

v(c) = v(c) + v′(c)(c− c) +
1

2
v′′(c∗)(c− c)2.

If v′′(c) ≤ 0 for all c it follows that

v(c) ≤ v(c) + v′(c)(c− c).

Thus

Ev(c̃) ≤ v(c) + v′(c)E(c̃− c) = v(E(c̃)).

(B) If v′′(c) < 0 for all c it follows that

v(c) < v(c) + v′(c)(c− c) for c 6= c

Then as long as c̃ 6= c with positive probability,

Ev(c̃) < v(E[c̃]).
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Solution 1.5.9.

(A) Case n = 2 follows from definition. As an induction hypothesis suppose the

inequality holds for n = k. For n = k + 1, we have

v

(
k+1∑
i=1

µici

)
= v

(
(1− µk+1)(

k∑
i=1

µi
1− µk+1

ci) + µk+1ck+1

)

≥ (1− µk+1)v

(
k∑
i=1

µi
1− µk+1

ci

)
+ µk+1v(ck+1)

≥ (1− µk+1)
k∑
i=1

µi
1− µk+1

v(ci) + µk+1v(ck+1)

=
k+1∑
i=1

µiv(ci).

(B) For any discrete random variable c̃, let µi = Pr(c̃ = ci). Then E[c̃] =
∑
µici,

E[v(c̃)] =
∑
µiv(ci). Hence the inequality proven in (A) can be written as

v(E[c̃]) ≥ E[v(c̃)].

1.6 Utility Paradoxes and Rationality

Solution 1.6.1. A trickster could not profit if he had to offer them and pay off

on gambles with positive returns, like those hypothetically presented in that example.

However, he might be able to exploit their inconsistent choices if the funds backing the

gambles come from some exogenous source, supposing that the trickster is in a position

to direct who initially gets which. Specifically, let there be two individuals A and B

(Alex and Bev) with identical endowments and preferences. The two exogenously

supplied gambles, after stripping away the confusing framing of the question, amount

to (i) $250 certain, versus (ii) the prospect ($400, $200; 0.25, 0.75). Suppose that Alex

had indicated a preference for option (i) in the first version of the question and Bev a

preference for (ii) in the second version. Then the trickster need only arrange matters
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so that Alex and Bev each initially receives his/her non-preferred option. Having done

this he can say:

(To Alex): You had indicated a preference for 200+50 with certainty (call it option

1a) over $200 plus a 25% chance of winning an extra $200 (call it option 1b). You

now have option 1b. I will take that off your hands and give you 1a instead, except

that since you definitely prefer 1a you should be willing to sweeten the deal a little

for me and give me just $1.

(To Bev): You had indicated that receiving $400− $150 with certainty (call it option

2a) is less desired than receiving $400 subject to a $75% chance of losing $200 (call

it option 2b). You now have option 2a. I will take that off your hands and give you

2b instead, except that since you definitely prefer 2b you should be willing to sweeten

the deal a little for me and give me just $1.

Given that 1a and 2a are identical, as are 1b and 2b, by ”re-framing” the two gambles

the trickster has been able to make a middleman’s profit.

Remark 1. If Alex and Bev are both risk averse, each of them actually should prefer

the certainty option (i) to the fair gamble (ii). Thus, in the described exchange Alex

really gains; it is Bev who loses out, owing to the confusing framing of the question.

Solution 1.6.2.

(A) If you think there are more black balls than yellow balls, then you should choose

black, otherwise you should choose red.

(B) If you think there are more black balls than yellow balls, then you should choose

red, otherwise you should choose black.

(C) Suppose you choose black in (A). Formally, this means

(0, 100, 0;
1

3
, b, y) � (100, 0, 0;

1

3
, b, y),
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where b = Pr(black), y = Pr(yellow). We can write them equivalently as compound

lotteries

(1− y)(0, 100;
1

3(1− y)
,

b

1− y
) + y(0; 1) � (1− y)(100, 0;

1

3(1− y)
,

b

1− y
) + y(0; 1).

It then follows from the independence axiom that

(0, 100;
1

3(1− y)
,

b

1− y
) � (100, 0;

1

3(1− y)
,

b

1− y
).

By the independence axiom again, we have

(1−y)(0, 100;
1

3(1− y)
,

b

1− y
)+y(100; 1) � (1−y)(100, 0;

1

3(1− y)
,

b

1− y
)+y(100; 1).

This is equivalent to

(0, 100, 100;
1

3
, b, y) � (100, 0, 100;

1

3
, b, y),

or, the agent will choose red in (B).

Similarly, if the agent chooses red in (A), independence axiom will imply that he will

choose black in (B).

(D) The Ellsberg paradox shows that individuals do not necessarily follow the inde-

pendence axiom. There are a number of theories, such as ambiguity aversion, deceit

aversion, that try to explain the Ellsberg paradox, and they will lead to different

utility functions other than the von-Neumann Morganstein expected utility which is

linear in probabilities. However, as mentioned in the text, behaviors inconsistent with

the standard theory may be susceptible to money pump tricks, and this is often used

as a justification to the standard theory.
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Solution 1.6.3.

(A) Yes. Write the four lotteries (payoff is in terms of millions) considered in the text

as follows:

A : (1, 1, 1; 0.1, 0.89, 0.01)

B : (5, 1, 0; 0.1, 0.89, 0.01)

C : (1, 0, 1; 0.1, 0.89, 0.01)

D : (5, 0, 0; 0.1, 0.89, 0.01).

The Allias paradox claims that A � B and D � C. Consider the following two

lotteries:

E : (0, 5; 1/11, 10/11)

F : (0, 0; 1/11, 10/11).

Then A � B implies A � E by the independence axiom, as A = (A,A; 0.11, 0.89)

and B = (E,A; 0.11, 0.89). However, A � E will imply C � D by the independence

axiom, as C = (A,F ; 0.11, 0.89) and D = (E,F ; 0.11, 0.89). Hence the Allais paradox

violates the independence axiom.

(B) First you prepare a 100 faced die. As A � B, one can buy B from the agent

with a price of 1− ε for a small enough ε. As D � C, one can buy C from the agent

by offering him D. After the trade has been set, roll the die. Suppose the number is

1 ∼ 10, then from lottery B you gain 5 and from lottery C you gains 1, but the agent’s

lottery D makes you pay 5. Suppose the number is 11 ∼ 99, then from lottery B you

gain 1. Suppose the number is 100, then from lottery C you also gain one. Hence,

no matter what the outcome of the die is, you always get a net transfer of 1, but the

only payment you make to the other agent is 1− ε. Hence you can get ε for sure.
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Solution 1.6.4.

(A) The indirect utility function is defined as

v̂(p) = max
x,y

x+ α ln y

s.t. x+ py = W . Plugging in the budget constraint we get

v̂(p) = max
y

(W + α ln y − py)

(B) Take FOC w.r.t. y to obtain

p =
α

y
.

Hence

v̂(p) = W − α + a lnα− α ln p.

(C)
d2v̂

dp2
= α

1

p2
> 0.

(D) The situations leading respectively to the v(x, y) and v̂(p) functions vary with

regard to: (i) the source of uncertainty and, more importantly, (ii) the scope of al-

lowable action once the uncertainty is resolved. In speaking of the v(x, y) function as

representing risk aversion with respect to good y, the source of uncertainty was possi-

ble variation in the person’s endowment of good y alone, the other good x being held

constant. And implicit in the definition of v(x, y) is that the individual can take no

further action once endowed with smaller or larger amounts of good y. With the v̂(p)

function, the source of uncertainty for the individual is not his endowment (which is

held fixed at W) but rather possible variations in price p. And, what is crucial, implicit

in the v̂(p) function is that the individual is allowed now to respond to variations in

p by optimally adjusting his x, y consumption pattern after the uncertainty has been

resolved. The more extreme the price variation, the greater the gain from such ex post

optimal adjustments. Hence, unless an individual is highly risk averse with respect to

uncertainty about x and y, he is likely to prefer price variability.
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