
The Analytics of Information and Uncertainty

Answers to Exercises and Excursions

Chapter 3: Comparative Statics of the Risk-Bearing Optimum

3.1 Measures of Risk Aversion

Solution 3.1.1.

(A) The quadratic utility function has the form

v(c) = k0 + k1c−
1

2
k2c

2

where k1, k2 > 0. Furthermore, we restrict the domain of c to be 0 ≤ c < k1/k2 so the utility function

is strictly increasing in this region, and is increasing absolute risk aversion and increasing relative

risk aversion. Hence

A(c) =
k2

k1 − k2c

is increasing for every c < k1/k2. Further

R(c) =
k2c

k1 − k2c

is also increasing for every c < k1/k2.

(B) We have

A(c) =
1

α+ βc

R(c) =
c

α+ βc
.

So

A′(c) =
β

(α+ βc)2
≤ 0

if and only if β ≤ 0.

R′(c) =
α

(α+ βc)2
≥ 0

if and only if α ≥ 0.
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Solution 3.1.2.

(A) If v(c) = −e−Ac, then v′(c) = Ae−Ac, v′′(c) = −A2e−Ac, hence A(c) = −v′′/v′ = A. To show

uniqueness, we solve the ordinary differential equation

−v
′′

v′
= A.

Rewrite the equation as
d ln v′(c)

dc
= −A.

Integrate both sides to get

ln v′(c) = −Ac+B.

Take exponential on both sides and integrate again to get

v(c) =
1

−A
e−Ac+B +D = −e

B

A
e−Ac +D.

Here B and D are arbitrary constants.

(B) This follows from direct computations. Note that when R > 1, the utility function will be

v(c) = −c1−R exhibits CRRA, so that v′ > 0.

Solution 3.1.3.

(A) Yes. For example, consider G = (100,−1/0.99, 0.01, 0.99). Then E[G] = 0, E[(G − E[G])3] =

1003 × 0.01 + (−1/0.99)3 × 0.99 >> 0.

(B) The Taylor expansion of v(c) around the mean µ = E[c̃] is given by

v(c) ≈ v(µ) + v′(µ)(c− µ) +
v′′(µ)(c− µ)2

2
+
v′′′(µ)(c− µ)3

6
. (1)

Substituting c̃ for c in (1) and taking expectation yields

E[v(c)] ≈ v(µ) +
v′′(µ)E[(c̃− µ)2]

2
+
v′′′(µ)E[(c̃− µ)3]

3!
.

Hence v′′′ > 0 implies positive-skewness preference.

(C)
d

dc

(
−v
′′(c)

v′(c)

)
=
−v′′′(c)v′(c) + (v′′(c))2

(v′(c))2
< 0

implies

v′′′(c) >
(v′′(c))2

v′(c)
> 0.

2



Solution 3.1.4. Let vJ(c) = f(vK(c)) where f ′ > 0. Then

AJ(c) = −f
′(vK(c))v′′K(c) + f ′′(vK(c))v′2K(c)

f ′(vK(c))v′K(c)

= AK(c)− f ′′(vK(c))v′K(c)

f ′(vK(c))
.

Hence AJ(c) > AK(c) if and only if f ′′ < 0. This shows (A) and (B).

Solution 3.1.5.

(A) Without loss of generality, assume v(c) = −e−Ac. The agent rejects the small gamble if

−1

2
e−110A − 1

2
e100A < −1,

which is equivalent to

e−110A + e100A > 2.

Using numerical methods (the quickest way is an Excel spreadsheet), one can find the smallest A for

which the above inequality holds is A = 0.001.

(B) No. If A ≥ 0.001, then e1000A ≥ e10 > 2, hence the agent will surely reject the second gamble as

−1

2
e−GA − 1

2
e1000A < −1,

for any G.

Solution 3.1.6.

(A) A 2nd order Taylor series expansion of v around µ = E[c̃] gives

v(c) ≈ v(µ) + v′(µ)(c− µ) +
v′′(µ)

2
(c− µ)2.

Hence

v(µ− b) = E[v(c̃)] ≈ v(µ) +
v′′(µ)

2
σ2.

By the mean value theorem, there exists ĉ ∈ (µ− b, µ) such that

v′(ĉ)b ≈ −v
′′(µ)

2
σ2.

Hence

b ≈ −v
′′(µ)

v′(ĉ)

σ2

2
.
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(B) When the risk is small, we can apply (A) to the utility function given by v(w + c), and then

DARA implies

b1 ≈ −
v′′(µ+ w)

v′(c′′ + w)

σ

2
< −v

′′(µ)

v′(c′)

σ2

2
≈ b0.

(C) Let v = v(c+ w). Suppose
−v′′(c+ w)

v′(c+ w)
<
−v′′(c)
v′(c)

.

Then by Exercise 3.1.4, there exists an increasing and convex function f such that v(c+w) = f(v(c)).

Now by the definition of b1 and Jensen’s inequality,

f(v(µ− b1)) = v(µ+ w − b1) = E[v(w + c̃)] = E[f(v(c̃)] > f(E[v(c̃]) = f(v(µ− b0)).

Hence b1 < b0.

Solution 3.1.7.

(A) Equation (i) gives
1

3
v(c) +

1

3
v(c+ e) +

1

3
v(c− e) = v(c− b0).

Equation (iii) gives

1

3
v(w + c) +

1

3
v(c+ e) +

1

3
v(c− e) =

1

3
v(w + c− b2) +

2

3
v(c− b2).

Substitute (i) into (ii) and rearrange to get

[v(c+ w)− v(c+ w − b2)]− [v(c)− v(c− b2)] = 3[v(c− b2)− v(c− b0)]. (2)

(B) As v is concave, the left-hand side of (2) is negative. Hence, b2 > b0.

(C) Observe from (A) that for fixed b2, a rise in w makes the left-hand side more negative. Hence,

for the equation to hold, b2 must also rise. Thus, the larger the w (the larger income uncertainty is),

the larger b2 the agent is willing to pay. This result is solely due to the fact that v′′ < 0. That is, if

the person is risk averse, adding more risk makes his risk premium larger.
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3.2 Endowment and Price Effects

3.2.1 Complete Markets

Solution 3.2.1.1.

(A) The Fundamental Theorem of Risk Bearing implies

πsv
′(cs)

ps
= λ ∀s. (3)

Suppose cs rises when ps rises, then πsv
′(cs)/ps decreases. As ps′ stays the same for all s′ 6= s, it

implies cs′ rises for all s′ 6= s. But this violates the budget constraint.

(B) Part (A) implies a rise in ps will result to a decrease in holdings of cs. For a net seller it implies

he will sell more of cs.

Solution 3.2.1.2.

(A) Let cs(p1, ..., pS) = cs(p) be the demand function for state-s claim. Assume own price elasticity

e < −1, that is,
∂cs(p)

∂ps

ps
cs(p)

< −1.

Then
∂pscs(p)

∂ps
= cs(p) +

ps∂cs(p)

∂ps
< cs(p)− cs(p) = 0.

Hence the spending on state-s claim decreases. As a result, spending on state-s′ claims will increase

(at least for some s′). Equation (3) then implies for all s′ the state-s′ claims increase. Hence

∂cs′(p)/∂ps > 0.

(B) No, the own price elasticity must be larger than −1, otherwise it contradicts what’s proved in

(A), as shown by the graph.

(C) Let s′ 6= s. Equation (3) implies

πsv
′(cs)

ps
=
πs′v

′(cs′)

ps′
.

Hence

πscsv
′(cs) =

pscsπs′v
′(cs′)

ps′
.

Differentiate both sides with respect to ps to obtain

πs

(
∂cs
∂ps

v′(cs) + csv
′′(cs)

∂cs
∂ps

)
=
πs′

ps′

(
csv
′(cs′) + psv

′(cs′)
∂cs
∂ps

+ pscsv
′′(cs′)

∂cs′

∂ps

)
. (4)
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Figure 1: Ex 3.2.1.2(B)

Suppose that own price elasticity < −1. Then the first term in the right-hand side of (4) is negative.

Furthermore, (A) will imply the second term in the right-hand side is also negative. It follows that

the left-hand side must be negative. Rearranging and noting that ∂cs/∂ps < 0, we get

1 +
v′′(cs)cs
v′(cs)

> 0,

which says relative risk aversion is less than 1.

Conversely, if the relative risk aversion is less than 1, then the left-hand side of (4) is negative. Suppose

the own price elasticity is larger than −1, then the argument in (A) will show that ∂cs′/∂ps < 0.

Hence the two terms in the right-hand side of (4) will all be positive, which is a contradiction.

3.2.2 Incomplete Markets

Solution 3.2.2.1.

(A) As

v((λqα + (1− λ)qβ) · zs) = v(λqα · zs + (1− λ)qβ · zs)

and v is strictly concave, we have

v(λqα · zs + (1− λ)qβ · zs) > λv(qα · zs) + (1− λ)v(qβ · zs).

This holds for each vector zs. It follows that for all s:

πsv((λqα + (1− λ)qβ) · zs) > λπsv(qα · zs) + (1− λ)πsv(qβ · zs).

The concavity of U(q) then follows by directly summing over s.
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(B) Suppose qα and qβ are on the same indifference curve which gives utility U . Since U is strictly

concave, for any convex combination of qα and qβ , we have

U(λqα + (1− λ)qβ) > λU(qα) + (1− λ)U(qβ) = U.

Hence the convex combination gives higher utility, which means the preference over q is convex.

Solution 3.2.2.2.

(A) The agent solves

max
q1,...,qM

k1 − k2E[e−A(
∑M
m=1 qmzm)]

s.t.
M∑
m=1

pmqm = W.

Substituting q1 = (W −
∑M
m=2 qmpm)/p1 and letting z1 = 1, we get

max
q2,...,qM

k1 − k2e−A
W
p1E

[
e−A(−

∑M
m=2

pmqm
p1

+
∑M
m=2 qmzm)

]
.

(B) The first-order condition is then

∂

∂qm
E
[
e−A(−

∑M
m=2

pmqm
p1

+
∑M
m=2 qmzm)

]
= 0

for m = 2, ...,M , which is independent of W .

Solution 3.2.2.3. Let k2 = p2q2/W . Then the budget constraint is p1q1/W + k2 = 1. The utility

is then

U(k2) = E[v(q1z1 + q2z2)] = E[v((1− k2)
W

p1
)z1 +

Wk2
p2

z2].

Let

c =
W

p1
z1 +Wk2

(
z2
p2
− z1
p1

)
= (1 +R1)W +Wk2(R̃2 −R1).

Then

U(k2) = E[v((1 +R1)W +Wk2(R̃2 −R1))].

Hence the optimal k∗2 satisfies the FOC

U ′(k∗2) = E[W (R̃2 −R1)v′(c∗)] = 0. (5)
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Now differentiate (5) with respect to W to get

d

dW
U ′(k∗2) = E[(R̃2 −R1)v′(c∗)] + E[W (R̃2 −R1)v′′(c∗)[(1 +R1) + k2(R̃2 −R1)]]

= −E[(R̃2 −R1)v′(c∗)R(c∗)].

If R(c) is constant, then dU ′(k∗2)/dW = 0, which means k2 is independent of W . If R(c) is increasing,

then for all realizations of R̃2 we have

(R̃2 −R1)R(c∗) > (R̃2 −R1)R((1 +R1)W ),

which implies an increase of W decreases the marginal utility of k2, and thus the optimal k2 will

decrease. Similarly, if R(c) is decreasing then the optimal k2 increases with W .

Solution 3.2.2.4.

(A) Substituting vJ(c) = f(vK(c)) into (3.2.9) gives

U ′J(qJ2 ) = PA2 E[(R̃2 −R1)f ′(vK(c̃))v′K(c̃)] = 0. (6)

(B) For each possible realization of R̃2, since f is concave, f ′ is decreasing, and we then have

(R2 −R1)f ′(vK(c)) < (R2 −R1)f ′(vK((1 +R1)W )).

Substituting back into (6) gives

U ′J(qJ2 ) = 0 < f ′(vK((1 +R1)W ))PA2 E[(R̃2 −R1)v′K(c̃)] = f ′(vK((1 +R1)W ))U ′K(qJ2 ).

Hence qK2 > qJ2 .

3.3 Changes in the Distribution of Asset Payoffs

Solution 3.3.1. From (3.1.1), expected utility is

U(q2) =

S∑
s=1

πsv(Wz1 + q2(z2s − z1)).

Differentiating w.r.t. q2, the optimal holding q∗2 of the risky asset satisfies:

U ′(q∗2) =

S∑
s=1

πs(z2s − z1)v′(Wz1 + q∗2(z2s − z1)) = 0.
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Suppose z21 rises to ẑ21. Holding q∗2 constant, only the first term in the summation changes. Then

U ′(q∗2) rises with z21 if

φ(z21) ≡ (z21 − z1)v′(Wz1 + q2(z21 − z1))

is an increasing function of z21. Differentiating w.r.t z21 we obtain:

φ′(z21) = v′(·) + q∗2(z21 − z1)v′′(·)

= v′(·)
[
1− q∗2(z21 − z1)

Wz1 + q∗2(z21 − z1)
R(·)

]
,

where R is the degree of relative risk aversion.

From the first expression for φ′ it follows immediately that, if z21 ≤ z1, φ′(z21) is positive. From

the second, if z21 > z1 and R ≤ 1, then the bracket is positive and so again φ′(z21) is positive. We

have therefore established that φ rises with z21. Thus, for any ẑ21 > z21, U(q2) is strictly increasing

at q2 = q∗2 . Since, as may readily be confirmed, U(q2) is a strictly concave function of q2, it follows

immediately that the new optimum holding of the risky assets exceeds q∗2 .

Remark 1. One feature of this exercise and of the type of parametric change assumed in the text is

that the shift in the payoff distribution of the risky asset results in a lower mean return to holding the

asset. From this observation it might be conjectured that clearer results would hold for changes in

the distribution of consequences that preserve the expected return on the risky asset. In particular, if

the expected payoff E[z̃2] were held constant but the variance σ2(z̃2) were to rise, it seems plausible

that an individual would reduce his demand for the risky asset. However, as the following exercise

indicates, even this conjecture is false. Indeed it is possible for the mean return to rise and for the

variance to fall, and yet for the optimal holding of the risky asset to remain unchanged.

Solution 3.3.2. (A) and (B) are confirmed by direct computation. To establish (C), suppose that

the individual spends a proportion x of his wealth on the risky asset. Then his final consumption in

state s is

cs(x) = xz2s + (1− x)50

= 50 + (z2s − 50)x.

Since v(c) = −e−Ac, expected utility becomes

U(x) = −πe−Ac1(x) − (1− π)e−Ac2(x).

Differentiating w.r.t. x and making use of the expression for cs(x) we obtain

dU

dx
= Aπe−Ac1(x)(z21 − 50) +A(1− π)e−Ac2(x)(z22 − 50)

= Ae−Ac2(x)[π(z21 − 50)eA(c2(x)−c1(x)) + (1− π)(z22 − 50)].
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From the table we know that, in each of the three cases, c2(x) − c1(x) = 30 at x = 1/2. Moreover,

by assumption e30A = 4. Then, for each of the three cases:

dU

dx

∣∣∣∣
x=1/2

= Ae−Ac2(x)[4π(z21 − 50) + (1− π)(z22 − 50)].

It is then a straightforward matter to confirm that the term in brackets is zero for each of the three

cases. That is, even though assets α and β have the same mean and β has a higher variance, the

optimal holding of the risky asset is the same. Moreover asset γ has a higher mean and lower variance

than asset β and yet the optimal holding of the risky asset is still the same.

3.4 Stochastic Dominance

3.4.1 Comparison of Different Consumption Prospects

Solution 3.4.1.1. Using integration by parts with u = v(c), dv = [F ′(c)−H ′(c)]dc, for all increasing

function v(c)

EF [v(c)]− EH [v(c)] =

∫ β

α

v(c)[F ′(c)−H ′(c)]dc

= v(c)(F (c)−H(c))|βα −
∫ β

α

v′(c)[F (c)−H(c)]dc

=

∫ β

α

v′(c)[H(c)− F (c)]dc (7)

> 0,

where the last inequality follows from the fact that v′(c)[H(c) − F (c)] ≥ 0 for all c with strict

inequality from some c.

Solution 3.4.1.2. Let I(c) =
∫ c
α

[H(x) − F (x)]dx. Integrating (7) by parts using u = v′(c) and

dv = dI(c), we obtain

EF [v(c)]− EH [v(c)] = v′(c)I(c)|βα −
∫ β

α

v′′(c)I(c)dc. (8)

As v′(c) is increasing, the first term of (8) is positive. Also v′′(c) < 0 and I(c) > 0 imply that the

second term of (8) is negative. Hence, EF [v(c)]− EH [v(c)] > 0.
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Solution 3.4.1.3. Assuming H is a mean-preserving spread of F , using integration by parts we then

have

I(β) = (H(x)− F (x))x|βα −
∫ β

α

x(H ′(x)− F ′(x))dx = 0.

Hence the first term of (8) is zero. It then follows from v′′ < 0 that

EF [v(c)] > EH [v(c)].

Remark 2. Observe that if v(c) is convex, then the inequality will be reversed and then the agent

will prefer the mean-preserving spread G to F .

Solution 3.4.1.4.

(A) Suppose F and G are not ranked by FOSD. Then there exists c1 6= c2 such that F (c1) < G(c1)

and F (c2) > G(c2). Define

vi(c) =

 −1 c < ci

0 c ≥ ci

Then

EF [v1(c)] = −F (c1) > −G(c1) = EG[v1(c)]

and

EF [v2(c)] = −F (c2) < −G(c1) = EG[v2(c)].

Hence there exist two increasing functions that rank F and G differently.

(B) Suppose F and G are not ranked by SOSD. Then there exists c1 6= c2 such that∫ c1

α

F (c)dc <

∫ c1

α

G(c)dc

and ∫ c2

α

F (c)dc >

∫ c2

α

G(c)dc.

Define

vi(c) =

 c− ci c < ci

0 c ≥ ci
Then integration by parts shows

EF [v1(c)] =

∫ c1

α

(c− c1)F ′(c)dc

= (c− c1)F (c)|c1α −
∫ c1

α

F (c)dc

> −
∫ c1

α

G(c)dc

= EG[v1(c)].
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Similarly, EF [v2(c)] < EG[v2(c)]. Hence there exist two concave functions that rank F and G

differently.

3.4.2 Responding to Increased Risk

Solution 3.4.2.1.

(A) This follows from an application of Ranking Theorem II.

(B) If ∂/∂x is convex in θ, then the ranking will be reversed, by the remark to Exercise 3.4.1.3.

Solution 3.4.2.2.

(A) The argument is exactly the same as Exercise 3.1.3(C).

(B) Let x be the saving and Ĩ2 be the second-period income with distribution F . Then the agent

solves

max
x

v0(I0 − x) + EF [v1((1 + r)x+ Ĩ1)].

The first-order condition is

∂EF [v(x, Ĩ1)]

∂x
= −v′0(I0 − x∗F ) + (1 + r)EF [v′1((1 + r)x∗F + Ĩ1)] = 0.

Suppose v′′′ > 0, then ranking theorem II, applied to the second term above, implies

∂EG[v(x, Ĩ1)]

∂x

∣∣∣∣∣
x=x∗F

> 0.

Hence x∗G > x∗F .

Solution 3.4.2.3.

(A)

µx
v′′(λ+ µx)

v′(λ+ µx)
= (µx+ λ− λ)

v′′(λ+ µx)

v′(λ+ µx)

= −R(λ+ µx) + λA(λ+ µx).
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(B) Suppose asset i costs pi. Then for each q2 and realization of z̃2

c(q2, z2) = W
z1
p1

+ p2q2

(
z̃2
p2
− z1
p1

)
.

Then

A :=
∂v(c(q2, z2))

∂q2
= v′(c(q2, z2))p2

(
z2
p2
− z1
p1

)
.

Hence
∂A

∂z2
= v′(c(q2, z2))

(
1 +

v′′(c(q2, z2))

v′(c(q2, z2))
q2p2

(
z2
p2
− z1
p1

))
.

(A) then implies the above equation is positive and decreasing. We can then apply ranking theorem

II to conclude that if the distribution of z̃2 becomes less favorable, then the optimal x∗ will decrease.

(C) Assuming DARA and IRRA, we will have ∂A/∂z2 is decreasing, but not necessarily positive.

With mean-preserving spreads, we can apply ranking theorem III to conclude that when the distri-

bution of z̃2 changes to a less favorable one, the optimal x∗ will decrease.

Solution 3.4.2.4.

(A) As φ(x, v) = v−1(x, c), the inverse function theorem shows φ′(x, v) = 1/v′(x, c). Further,

F̂ (v(c)) = F (c) implies F̂ ′(v(c))dv = F ′(c)dc. Apply the change of variable c = φ(x, v) to the

integral

U ′F (x) =

∫ β

α

∂v(x, c)

∂x
F ′(c)dc,

we get

U ′F (x) =

∫ vβ

vα

∂

∂x
v(x, φ(x, v))F ′(c)φ′(x, v)dv

=

∫ vβ

vα

∂

∂x
v(x, φ(x, v))F̂ ′(v(c))dv,

where α = φ(x, vα) and β = φ(x, vβ).

(B) Suppose Ĝ(v) is a mean preserving spread of F̂ at x∗, then∫ vβ

vα

v(x∗, c)F̂ ′(v(c))dv =

∫ vβ

vα

v(x∗, c)Ĝ′(v(c))dv.

Hence ∫ β

α

v(x∗, c)F ′(c)dc =

∫ β

α

v(x∗, c)G′(c)dc.

So the corresponding F and G gives the same expected utility at x∗.

(C) This follows directly from the expression obtained in (A).
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(D) Differentiate both sides by c to obtain

y′(v(x, c))
∂v(x, c)

∂c
=
∂v(x, c)

∂c∂x
.

Assume v is smooth so we can change the order of the cross derivative. Then

y′(v(x, c)) =
∂/∂x(∂v(x, c)/∂c)

∂v(x, c)/∂c

=
∂

∂x
ln(

∂v(x, c)

∂c
). (9)

(E) Differentiate (9) by c again to obtain

y′′(v(x, c))
∂v(x, c)

∂c
=

∂2

∂c∂x
ln(

∂v(x, c)

∂c
).

Assume the right-hand side is negative, then since ∂v(x, c)/∂c > 0, y′′(v) < 0. Then the optimal

response theorem II follows from the expression in (A) and ranking theorem III.

Solution 3.4.2.5.

(A) Risk neutral agent maximizes expected profits, hence he solves

max
q
E[pq − C(q)].

The F.O.C. is then

pn ≡ E[p] = C ′(q∗).

Under q∗, free entry condition implies the expected profit equals the outside option, i.e.,

pnq
∗ − C(q∗) = w.

(B) Suppose to the contrary that pa ≤ pn. Then,

E[v(p̃qa − C(qa)) < v(paqa − C(qa)) by Jensen’s inequality,

< v(pnqa − C(qa)) as pa ≤ pn

< v(pnqn − C(qn)) as qn maximizes expected profit at price pn

= v(w).

If this is true the firm is strictly better off taking its outside option.
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(C) Let f(q) = E[v(pq − C(q)] and therefore f ′(q) = E[v′(pq − C(q)](p − C ′(q))]. Differentiate the

integrand of f ′(q) with respect to p to get:

∂

∂p
v′(pq − C(q))(p− C ′(q)) = v′′(pq − C(q))q(p− C ′(q)) + v′(pq − C(q))

= v′(pq − C(q))

(
1 + [pq − qC ′(q)]v

′′(pq − C(q))

v′(pq − C(q))

)
= v′(pq − C(q)) (1 + φ(q, p)) .

Hence if φ(q, p) is decreasing in p, then the integrand is concave in p, it then follows from ranking

theorem II that the optimal q∗∗ for a mean preserving spread p̃ of pn will decrease.

(D) If C(q) is strictly convex then for any q0 and q1 6= q0

C(q1) > C(q0) + C ′(q)(q1 − q0).

It follows that

0 = C(0) > C(q) + C ′(q)(0− q).

Define z = pq − qC(q). Then

φ(q, p) = [pq − qC ′(q)]v
′′(pq − C(q))

v′(pq − C(q))

= [pq − C(q) + C(q)− qC ′(q)]v
′′(pq − C(q))

v′(pq − C(q))

= z
v′′(z)

v′(z)
+ [C(q)− qC ′(q)]v

′′(z)

v′(z)

= −R(z) + [C(q)− qC ′(q)]A(z)

The bracketed expression is positive. Therefore under the assumptions of IRRA and DARA the

right-hand side is a decreasing function of z. As z is an increasing function of p it follows that φ(q, p)

is a decreasing function of p. Hence, by (C), output per firm declines.
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