
The Analytics of Information and Uncertainty

Answers to Exercises and Excursions

Chapter 5: Information and Informational Decisions

5.1 Information-Some Conceptional Distinctions

This section contains no exercises.

5.2 Informational Decision Analysis

5.2.1 The use of evidence to revise beliefs

Solution 5.2.1.1. Since at least one of booths #2 and #3 must be empty (and the M.C. knows

which one it is), it might appear that his drawing the curtain conveyed no information, and hence

that there is no basis for the contestant to change her choice. But such an inference is incorrect.

The tabular form that follows represents a convenient procedure for employing Bayes’ Theorem to

obtain the posterior probabilities implied by any given message m (the message here being ”booth

#2 is empty”).

state of the world prior prob likelihood joint prob posterior

Prize is in #1 1/3 1/2 1/6 1/3

Prize is in #2 1/3 0 0 0

Prize is in #3 1/3 1 1/3 2/3

1/2 1

Table 1: Computation of posterior probabilities (after message m)

The next-to-last column represents the column of the joint probability matrix J associated with

the particular message received, while the adjoined sum at the bottom of the column is the overall

probability of that message. (Once the contestant chose booth #1, there were equal prior chances of

the M.C. opening the curtain of either booth #2 or #3.) The last column corresponds to the relevant

column of the potential posterior matrix S. Note how the tabular form makes it easy to compute the

posterior probabilities . Evidently, the best choice now is booth #3. Intuitively, the M.C.’s action

told the contestant nothing about booth #1, her initial choice. But it was a valuable message as to

booth #2 versus #3.
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Remark 1. Another way to understand this problem is to look at a 100-doors version. There are

100 doors and only one has a prize inside. You pick a door, the M.C. opens 98 empty doors and asks

whether you will change. Intuitively, the remaining door is highly likely to have the prize, and most

people would choose to change.

Solution 5.2.1.2.

(A) The potential posterior matrix Π = [πs.m] is

Π =

 0.9 0.2

0.1 0.8


where the row is indexed by states and column by messages. Thus, π[s1|m1] = 0.9, π[s2|m1] = 0.1

etc. Next, using Equation (5.2.4) we compute (q1, q2), the unconditional probabilities of m1 and m2

π1 = 0.7 = 0.9q1 + 0.2q2

π2 = 0.3 = 0.1q1 + 0.8q2

to obtain (q1, q2) = (5/7, 2/7). Then we calculate the joint distribution J = [jsm] by jsm = πs·mqm:

J =

 9/14 2/35

1/14 8/35


Finally, we can obtain L = [qm·s] by qm·s = jsm/πs:

L =

 45/49 4/49

5/21 16/21


(B) For (i), we need nothing because we can get the marginal, hence conditional distribution from

the joint distribution.

For (ii), we need the prior πs so that we can recover the joint jsm = qm·sπs and then the rest of the

distributions.

For (iii), we need qm so that we can recover the joint jsm = πs·mqm and then the rest of the

distributions.

(C)

(i) To get conclusive information we need different states induce different messages. For example,

L =

 1 0

0 1


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It is not unique; an off-diagonal matrix

 0 1

1 0

 will also do.

(ii) To get completely useless information, we need that different states induce the same message

probability distribution. For example,

L =

 a 1− a

a 1− a

 .
for any a ∈ [0, 1]. Obviously, it is also not unique.

(iii) Suppose the prior is π and such an L matrix exists. In particular, m1 is conclusive and m2 is

uninformative. Let (q1, 1− q1) be the marginal probabilities of the messages. Then it must be

that

Π =

 1 π

0 1− π


The J matrix is then

J =

 q1 π(1− q1)

0 (1− π)(1− q1)


So the L matrix is

L =

 q1
π 1− q1

0 1− q1


which is not a likelihood matrix for any π as the rows do not add to one. Hence, it is impossible

to have exactly two messages of which one is completely informative and the other completely

uninformative.

5.2.2 Revision of optimal action and the worth of information

Solution 5.2.2.1. The possible terminal actions are x1 (do not bet), x2 (bet on heads), and x3 (bet

on tails). The best action on the basis of your prior information is obviously x0 = x1. The available

message service µ is a sample of size 1, the possible messages being a head or a tail. Following the

tabular method of exercise 5.2.1.1, we can compute the posterior probabilities given the message

m = “head” as follows:

Since the posterior probabilities are 2/3 for “coin is two-headed” and 1/3 for “coin is fair,” the

posterior probability of heads, after message m = “head”, is (1) · (2/3) + (0.5) · (1/3) = 5/6. The

best posterior terminal action is therefore x2 (bet on heads), with expected gain U(x2) − U(x0) =

30 · (5/6)− 50 · (1/6) = 162
3 . By a similar calculation, the message m = “tails” would lead to exactly
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state of the world prior prob(πs) likelihood(qm·s) joint prob(jsm) posterior(πs·m)

Coin is two-headed 1/3 1 1/3 2/3

Coin is fair 1/3 1/2 1/6 1/3

Coin is two-tailed 1/3 0 0 0

1/2 1

Table 2: Computation of posterior probabilities (after message “head”)

the same utility gain from the optimal posterior action x3 (bet on tails). So, by Equation (5.2.8),

16 2
3 is the worth of the message service.

Solution 5.2.2.2.

(A) Being risk neutral means the agent simply minimizes the expected loss. Since

E[L(R,P )] = 100(0.04− 0.02)0.7 = 1.4

E[L(A,P ] = 0.1 · 200(0.06− 0.04) + 0.1 · 200(0.08− 0.04) = 1.2

The agent should choose accept.

(B) First we compute the posteriors.

state of the world prior prob(πs) likelihood(qm·s) joint prob(jsm) posterior(πs·m)

m=good, m=defect m=good, m=defect m=good, m=defect

Defect rate 0.02 0.7 0.98, 0.02 0.686,0.014 0.709, 14/32

Defect rate 0.04 0.1 0.96, 0.04 0.096,0.04 0.099, 4/32

Defect rate 0.06 0.1 0.94, 0.06 0.094,0.006 0.097, 6/32

Defect rate 0.08 0.1 0.92, 0.08 0.092,0.008 0.095, 8/32

0.968, 0.032 1, 1

Table 3: Computation of posterior probabilities (after message “good”, “defect”)

Then we can compute the expected utilities of the two actions under the two posteriors. When

m = good, A yields a lower expected loss then R, hence he chooses A, and gets

E[L(A,P )] = 200(0.06− 0.04)0.097 + 200(0.08− 0.04)0.095 = 1.148.

When m = “defect” choosing R yields a lower expected loss, where he gets

E[L(R,P )] = 100(0.04− 0.02)× 14

32
= 0.875.
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Since qg = 0.968, qc = 0.032, the expected loss for having the sample is

EU = 0.968× 1.148 + 0.032× 0.875 = 1.14.

Hence he is willing to pay 1.2− 1.14 = 0.07 for a sample.

Solution 5.2.2.3.

(A) For v(c) = ln c, we know that individual 1’s demand will be cs = πsW/Ps. With conclusive

information, individual 2 will then consume W/ps for each state s. Thus

U2 − U1 =
∑
s

πs ln
W2

Ps
−
∑
s

πs ln
πsW1

Ps

=
∑
s

πs[lnW2 − lnPs]−
∑
s

πs[lnπs + lnW1 − lnPs]

= lnW2 − lnW1 −
∑
s

πs lnπs. (1)

(B) Let K be the agent’s willingness to pay for information. Then when W2 = W −K inserted in

(1) we need U2 − U1 = 0. Thus

ln(W −K)− lnW =
∑
s

πs lnπs.

Take exponential on both sides to obtain

W −K
W

= Πsπ
πs
s .

The fraction of wealth K∗ := K/W is then

K∗ = 1−
S∏
s=1

ππs
s .

(C) Set up a Lagrangian for

min
πs

S∏
s=1

ππs
s s.t.

∑
s

πs = 1

to obtain the solution πs = 1/S for all s. Intuitively, the uncertainty is greatest when all states are

equally likely.
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Solution 5.2.2.4.

(A) Given π1 = π2 = 1/2 we can solve for (q1, q2):

1

2
= 0.75q1 + 0.25q2

1

2
= 0.25q1 + 0.75q2

to obtain q1 = q2 = 1/2. Hence we can solve the J matrix

J =

 0.75
2

0.25
2

0.25
2

0.75
2


and then the L matrix

L =

 0.75 0.25

0.25 0.75


(B) With v(c) =

√
c, it is routine to show that the demand function is given by

cs =
Wπ2

s/P
2
s

π2
1

P1
+

π2
2

P2

.

Hence the indirect utility function V (π1, P1,W ) is then

V (π1, P1,W ) = π1

√√√√Wπ2
1/P

2
1

π2
1

P1
+

π2
2

P2

+ π2

√√√√Wπ2
2/P

2
2

π2
1

P1
+

π2
2

P2

.

Now V (1/2, 1/2, 100) = 10, and

V (0.75, 1/2, 100− ξ) = 0.75
√

2(100− ξ)

√
π2

1

π2
1 + π2

2

+ 0.25
√

2(100− ξ)

√
π2

2

π2
1 + π2

2

9 + 1 = 10

when ξ = 20.

Hence the willingness to pay is ξ = 20.

5.2.3 More informative versus less informative message services

Solution 5.2.3.1.

(A) With three states we can represent posterior beliefs as in Figure 5.5 (in the text). At the vertex

As of the triangle, the probability of state s is 1. Therefore the triple (A1, A2, A3) is the perfect

information service. Any other information service with three messages can be represented as a
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triangle which has the prior probability vector in its interior, since the prior is just the message-

weighted average of the posteriors.

In Figure 5.5 two information services µ̂ and µ are depicted. Each vertex of a triangle represents

the probability vector associated with a particular message. Note that the triangle for µ lies inside

the triangle for µ̂. (It is not difficult to confirm that the three posterior probability vectors must be

linearly independent unless the three points in the figure lie on a line.) It follows that each posterior

π·m of message service m is a convex combination of the posteriors of message service µ̂, that is:

Π = Π̂A.

Also, for consistency we know that

Πq = Π̂Aq = π = Π̂q̂,

where q and q̂ are the message probability vectors and π is the prior probability vector. But, since the

columns of Π̂ are linearly independent, this matrix is invertible. It follows immediately that Aq = q̂

and thus the information service µ̂ is preferred to µ.

(B) With two states and three messages, consider two information services for which the implied

posterior beliefs are as follows:

µ̂ : Π̂ =

 1 1
2 0

0 1
2 1

 and q̂ = (ε, 1− 2ε, ε)

µ : Π =

 5
6

1
2

1
6

1
6

1
2

5
6

 and q = (
1

2
− ε, 2ε, 1

2
− ε).

The posterior probability vector (5/6, 1/6) is a convex combination of (1, 0) and (1/2, 1/2). Similarly

(1/6, 5/6) is a convex combination of (1/2, 1/2) and (0, 1). Formally, we have

Π = Π̂A, where A =


2
3 0 0

1
3 1 1

3

0 0 2
3


However, it is no longer possible to draw any conclusion about the relative value of the two information

services since many different message probabilities are consistent with prior beliefs of (1/2, 1/2). In

particular, for all ε ∈ [0, 1/2] the above data are consistent with such prior beliefs, since in each case

Πq = Π̂q̂ =

 1
2

1
2


7



For ε sufficiently close to zero the information service µ̂ updates an individual’s prior with very low

probability while information service µ updates with probability close to 1. It is therefore necessarily

the case that µ is preferred over µ̂ for ε sufficiently close to zero. With ε close to 1/2, however, the

opposite is true. Information service µ̂ is almost perfect while µ has almost no value.

(C) At the end of the answer to (A) we established that if one information triangle lies inside the

other all the conditions for a strict ranking are satisfied. With four messages and one quadrilateral

inside the other, this is no longer the case.

Solution 5.2.3.2.

(A) Since πs·m =
∑
m̂ π̂s·m̂am̂m for all s, we can express this in vector notation as

π·m =
∑
m̂

am̂mπ̂·m̂.

(B) No. Consider a two state example with both states equally likely. Suppose that µ is conclusive.

That is, in state s only ms is sent. Now let µ̂ be the message service that, when in state s there is

a 50% chance of sending ms and 50% chance of sending an uninformative message m3. Then clearly

µ̂ is not preferred to µ. The equation Π = Π̂A is

 1 0

0 1

 =

 1 0 0.5

0 1 0.5




1 0

0 1

0 0


(C) Since Π̂A = Π, it suffices to show that Aq = q̂. To this end, suppose there exists q1, q2 s.t. Πqi = π

for i = 1, 2. Then Π̂Aqi = π for i = 1, 2. Suppose A(q1 − q2) 6= 0. Then Π̂(A(q1 − q2)) = π − π = 0,

which violates the assumption rank(Π̂) = M̂ . Hence A(q1 − q2) = 0. It then follows from the same

reasoning and that rank(A) = M̂ that q1 = q2. Hence q is unique. Since Π̂q̂ = Π̂Aq, we have q̂ = Aq.

Solution 5.2.3.3.

(A)

L =

 7
8

1
8

5
8

3
8


Hence q1 = (7/8)(1/2) + (5/8)(1/2) = 3/4. Then (q1, q2) = (3/4, 1/4). The potential posterior

probability matrix is

Π =

 7
12

1
4

5
12

3
4


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(B) The second message service delivers more information. This is because given the first message

service, either s = 1 or s = 2 has a high probability of inducing m1. Hence receiving m1 tells less

about the actual state in the first message service.

(C)

L̂ =

 3
4

1
4

1
4

3
4


Given this we can compute q̂ = (1/2, 1/2), and then we can compute the joint probability matrix

and the potential posterior matrix to be

Π̂ =

 3
4

1
4

1
4

3
4


(D) Since Π̂ is invertible, we can solve Π̂A = Π:

A = (Π̂)−1Π =

 2
3 0

1
3 1


(E) Fix an arbitrary prior (π, 1− π). It suffices to show that π < π1·1 < π̂1·1 and π2·2 = π̂2·2. First,

we can compute qm from the L matrices:

q1 =
7

8
π +

5

8
(1− π) and q̂1 =

3

4
π +

1

4
(1− π).

So

π1·1 =
l1·1π

q1
=

7
8π

7
8π + 5

8 (1− π)
=

π

π + 5
7 (1− π)

,

while

π̂1·1 =
l̂1·1π

q1
=

3
4π

3
4π + 1

4 (1− π)
=

π

π + 1
3 (1− π)

.

Thus π < π1·1 < π̂1·1. To show π2·2 = π̂2·2, we have

π2·2 =
3
8 (1− π)
3
8 −

2
8π

and π̂2·2 =
3
4 (1− π)
3
4 −

2
4π

.

Hence they are equal. In sum, we have shown that the bracketing condition is satisfied, i.e., the

agent, no matter what the prior is, becomes more certain of state 1 under µ̂ than under µ.

Furthermore, we can show that the Blackwell Theorem is satisfied: Since L̂ is invertible, solving

L = L̂B to get

B = L̂−1L =

 1 0

1
2

1
2


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Solution 5.2.3.4.

(A) Given v(c) = ln c, the demand is given by cs = πsW/Ps. So

U(π) = lnW − π lnP1 − (1− π) lnP2 + π lnπ + (1− π) ln(1− π). (2)

(B) Since
∂U(π)

∂π
= − lnP1 + lnP2 + lnπ − ln(1− π)

we see that
∂2U(π)

∂2π
=

1

π
+

1

1− π
> 0

so U(π) is convex.

(C) Solving  π + θ π − θ

1− π − θ 1− π + θ

 q1

q2

 =

 π

1− π


we get q1 = 1/2.

Hence the gain in expected utility is given by

Ω(θ) =
1

2
U(π + θ) +

1

2
U(π − θ)− U(π).

Substituting in (2) yields the desired expression.

(D) Since

∂Ω(θ)

∂θ
=

1

2
(ln(π + θ)− ln(1− π − θ))− 1

2
(ln(π − θ)− ln(1− π + θ))− lnπ + ln(1− π),

we see that ∂Ω(0)/∂θ

∣∣∣∣
θ=0

= 0 and by the concavity of ln c, ∂Ω(θ)/∂θ > 0. The convexity of Ω(θ)

follows from the convexity of U(π).

(E) Let k(θ) be the value of information. Since wealth only enters the utility by the term lnW , we

must have

ln(W − k(θ)) = lnW − Ω(θ).

Hence

k(θ) = W (1− e−Ω(θ)).

(F) We have
∂k

∂θ
= WΩ′(θ)e−Ω(θ)
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and thus
∂2k

∂θ2
= W [Ω′′(θ)e−Ω(θ) − (Ω′(θ))2e−Ω(θ)]

Since Ω′(0) = 0 and Ω′′(0) > 0, k′′(θ) > 0 around a neighborhood of zero. (Note that the higher

derivatives of U(π) are continuous.)

5.2.4 Differences in utility functions and the worth of information

Solution 5.2.4.1.

(A) Since the demand is cs = πsW/P1 when uninformed and cs = W/Ps when informed, the willing-

ness to pay, K, satisfies

1

2
ln(W −K) +

1

2
ln(W −K)− 1

2
ln(

1

2
W )− 1

2
ln(

1

2
W ).

Hence K = W/2.

(B) No matter how risk averse an agent is, the optimal consumption bundle is always riskless, both

with and without conclusive information. See Figure 5.2.4.1(B), where U, V are the utilities of

uninformed agents and Û , V̂ are the utilities of the informed. The double arrows represent the worth

of information – it is the same regardless of risk aversion.

Figure 1: Ex 5.2.4.1(B)
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Solution 5.2.4.2. (A) Recall that the FOC is given by

π1v
′(c1)

P1
=
π2v
′(c2)

P2
.

With π2 = 1− π1, we have
v′(c2)

v′(c1)
=

π1

1− π1

P2

P1
= 1.

(B) The optimal consumption with conclusive information is risky – see Figure 5.2.4.2. The worth

of information is indicated by the the double arrow.

Figure 2: Ex 5.2.4.2

(C) The red utility curves in Figure 5.2.4.2 are more risk-averse than the blue utility curves. The

worth of information is lower for a more risk-averse agent as the optimal consumption bundle under

conclusive information is risky.

(D) It follows from the first order condition in (A) that c1 < c2. Let K be the willingness to pay for

conclusive information. Then by Exercise 5.2.2.3 we have

K = W (1− ππ(1− π)1−π).

The final consumption bundle will be the lottery(
ππ(1− π)1−π

P1
,
ππ(1− π)1−π

P2
;π, 1− π

)
.

This is more risky than the uninformed optimal bundle(
πW

P1
,
πW

P2
;π, 1− π

)
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if and only if

(1− π)W < W −K < πW

if and only if

1− π < ππ(1− π)1−π < π

if and only if

1− π < π,

which is already assumed.

(E) If the price in the higher probability state is disproportionately higher, then risk aversion decreases

willingness to pay for conclusive information.

Solution 5.2.4.3. Suppose after buying the information service his optimal bundle is riskier than

the uninformed optimal bundle. Then being endowed with some wealth c0 will make the DARA

agent purchase the information, and make the CARA agent indifferent, and the IARA agent choose

not to purchase the information.

5.2.5 The worth of information: flexibility versus range of actions

Solution 5.2.5.1.

(A) This depends on the nature of the choices x1, x2, x3. Suppose x3 is sufficiently risky, then a more

risk averse agent will choose to wait. Suppose x3 is not risky (say, riskless), then a more risk averse

agent will not wait.

(B) The reasoning is similar to that of part (A) and Exercise 5.2.4.4. For example, a DARA agent

with risky x3 (relative to x1, x2) will now choose to take x3.

Solution 5.2.5.2.

(A) Suppose without loss of generality the newly added action x3 is such that v1(x3) > max{v1(x1), v1(x2)}

and v2(x3) < min{v2(x1), v2(x2)}. Consider two message services µ, µ̂ such that the bracketing con-

dition is satisfied with µ̂ being more informative than µ. Suppose that message 2 implies a lower

posterior for state 1, and message 1 implies a higher posterior for state 1. Then since v1(x3) is

highest, π1·1 < π̂1·1 will imply the expected utility under µ̂ is higher. This can be easily seen in

Figure 5.2.5.2, where C is the expected utility without information, B is the expected utility with µ

and A is the expected utility with µ̂.
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Figure 3: Ex 5.2.5.2

(B) Yes. If the information is better, it is more likely that the risky action yields a higher expected

payoff. Hence, as information gets better, one is less likely to choose the riskless one.

5.3 Group Decisions

This section contains no exercises.
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