
The Analytics of Information and Uncertainty

Answers to Exercises and Excursions

Chapter 6: Information and Markets

6.1 The inter-related equilibria of prior and posterior markets

Solution 6.1.1. The condition for equilibrium for an non-informative situation is

jsm∂v(c)/∂csmg
js′m′∂v(c)/∂cs′m′g′

=
Psmg
Ps′m′g′

.

For informative equilibrium, we first write down the agent’s utility maximization problem for the sake

of completeness. Let P Ismg denote the posterior price after receiving message m, and P 0
smg denote

the prior price. The agent solves

max
csmg,c̃smg

∑
m

qm
∑
s

πs·mv(csmg)

s.t. ∑
sg

P Ismgcsmg =
∑
sg

P Ismg c̃smg, ∀m

∑
smg

P 0
smg c̃smg = W.

The agent optimizes in two steps. First, he trades the contingent bundle c̃, and later, after he receives

message m, he trades csmg over all s, g, with the budget being the contingent wealth of c̃ given m.

Let λm and µ be the Lagrange multipliers of the first and second constraints, respectively. The

first-order condition is given by

qmπs·mv
′(csmg) = λmP

I
smg

λmP
I
smg = µP 0

smg.

Hence, given s,m, we have
v′(csmg)

v′(csmg′)
=

P Ismg
P Ismg′

=
P 0
smg

P 0
smg′

,

and given s, g, we have
jsmv

′(csmg)

jsm′v′(csm′g)
=

λm
λm′

P Ismg
P Ism′g

=
P 0
smg

P 0
sm′g

.

Since the allocation (csmg) is already optimal under the prices (P 0
smg) before and after one receives

the message m, no posterior trade is needed. Proposition 1 still holds.
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Solution 6.1.2. If the information is revealed prematurely, there will be no chance to trade and

individuals of one type are very adversely affected. In particular, each agent’s expected utility is −∞

as

EUi = 0.6 ln 400 + 0.4 ln 0 = −∞.

Similar for agent j. Hence their willingness to pay for the information not to be revealed is infinite.

Solution 6.1.3. First we calculate the CCM equilibrium. Note that for v(n, f) = lnn + ln f ,

the demand is given by cg = πs(W/2)/Pgs, where g ∈ {n, f}. Since both agents have the same

endowment, their wealth is the same. The market clearing condition is

0.5
W/2

Pn1
+ 0.6

W/2

Pn1
= 200

0.5
W/2

Pn2
+ 0.4

W/2

Pn2
= 200

0.5
W/2

Pn1
+ 0.6

W/2

Pn1
= 400

0.5
W/2

Pn2
+ 0.4

W/2

Pn2
= 160

Using the normalization Pn1 + Pn2 = 1, we get

(Pn1, Pn2, Pf1, Pf2) = (
11

20
,

9

20
,

11

40
,

9

16
).

Under such prices the wealth of each agent is W = 200. To attain the CCM allocation using an NCM

regime, note that in CCM the contingent wealth implied by the optimal allocation is W s = πsW . We

now show that under NCM with the same prior and posterior price, the agents can achieve the same

contingent wealth. Let c̃ins be agent i’s prior round trade of good n. For agent 1, he has W s = 100

for all s. So we need

200× 11

40
+ c̃1n1 ×

11

20
= 100

and

80× 9

16
+ c̃1n2 ×

9

20
= 100.

Thus we obtain

c̃1n1 =
900

11
, c̃1n2 =

1100

9
.

A similar argument for agent 2 implies

c̃2n2 =
1300

11
, c̃2n2 =

700

9
.

Note that the prior round market clears under the given prices and allocations. Hence with the above

prior round trade, the agents will be able to attain the CCM equilibrium allocation.
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6.2 Speculation and future trading

Solution 6.2.1.

(A) Since under P = (0.6, 0.4, 0.3, 0.5) each agent’s wealth is still 200, the optimal allocation under

the CCM regime will remain the same.

(B) It suffices to show that after the prior round trade the agent’s contingent wealth is (W 1,W 2) =

(120, 80). Agent 1’s contingent allocation is now

C = (
800

3
, 150 +

800

3
, 200− 1000

3
, 160− 1000

3
).

If s = 1, then his wealth is

800

3
× 0.6 + (200− 1000

3
)× 0.3 = 120.

Similarly, if s = 2, his wealth is

1250

3
× 0.4− 520

3
× 0.5 = 80.

(C) His state contingent wealth is exactly the same as that induced by the CCM allocation in the

posterior round, hence with the same price vector he can obtain the optimal allocation.

(D) He can use his wealth in the posterior round to buy goods to settle futures contracts.

Solution 6.2.2. The martingale property in general does not hold. We will formally set up the

agent’s utility maximization problem and derive the equilibrium condition for prices. Let gn, gf

denote the future trades of n, f in the prior round. The consumer’s maximization problem is given

by

max
cns,cfs,gn,gf

∑
s

πsv(cns, cfs)

subject to

P 0
ngn + P 0

f gf = 0 (1)

∀s : P Inscns + P Ifscfs = P Ins(cns + gn) + P Ifs(cfs + gf ) (2)

Let µ be the multiplier of (1) and λs be the multipliers of (2) for each s. The first-order condition is
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given by

cns : πs
∂v(cns, cfs)

∂cns
= λsP

I
ns

cfs : πs
∂v(cns, cfs)

∂cfs
= λsP

I
fs

gn : µP 0
n +

∑
s

λsP
I
ns = 0

gf : µP 0
f +

∑
s

λsP
I
fs = 0

Hence,
P 0
f

P 0
n

=

∑
s λsP

I
fs∑

s λsP
I
ns

=
E[∂v/∂cfs]

E[∂v/∂cns]
,

which shows that the prior-round price ratio of the goods equals the ratio of expected marginal

utilities of the goods.

If the numerator and denominator of the given equation is changed, one can check that the

martingale property will also not hold. In general, let E[X/Y ] = a/b and f(z) = 1/z. Jensen’s

inequality implies E[Y/X] = E[f(X/Y )] ≥ f(E[X/Y ]) = b/a.

6.3 The production and dissemination of information

6.3.1 Private information and the leakage problem

Solution 6.3.1.1.

(A) Because of log utility, the demand is

cω1 =
πωW

P1
=
πω(P1cω1 + P2cω2 )

P1
. (3)

(B) Note that the market clearing is given by

CI1 + CU1 = CI1 + CU1 .

Plugging in (3) to obtain

πI(CI1 +
P2

P1
CI2 ) + πU (CU1 +

P2

P1
CU2 ) = CI1 + CU1 .

Rearrange to obtain

P2

P1
=

(1− πU )CU1 + (1− πI)CI1
πUCU2 + πICI2

. (4)
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(C) Given P2/P1, one can obtain πI from (4).

(D) In this case, the price ratio becomes

P2

P1
=

(1− πU )CU1 + (1− πI)(CI1 − δ1)

πUCU2 + πI(CI2 − δ2)
.

But then the uninformed cannot infer πI from P2/P1, unless δ1, δ2 are known.

Solution 6.3.1.2.

(A) We have

PA1 = P1 + P2

PA2 = z1P1 + z2P2.

Hence
PA1
PA2

=
z1P1 + z2P2

P1 + P2
=
z1 + z2

P2

P1

1 + P2

P1

,

where P2/P1 is given by (4).

(B) By observing PA1 /P
A
2 , one can first infer P2/P1 from the above equation, and then obtain πI

from (4).

Solution 6.3.1.3.

(A) Similar to Ex 6.3.1.1(A), the price ratio is given by

P2

P1
=

(1− πU )CU1 + (1− πA)CA1 + (1− πB)CB1

πUCU2 + πACA2 + πBCB2
.

(B) Let

f(πA, πB) =
(1− πU )CU1 + (1− πA)CA1 + (1− πB)CB1

πUCU2 + πACA2 + πBCB2
.

The question amounts to whether, generically, f is a one-to-one function given that its domain

(the set of possible (πA, πB)) is finite. It should be clear that if one randomly picks finitely many

points in S = [0, 1]× [0, 1], then, with probability one, f will be one-to-one. The above claim holds

for arbitrary CI , CA, CB . For example, consider the case CA = CB = CI , then the value of f

(the price ratio) is determined solely by πA + πB . So we can partition S into ∪k∈[0,1]Sk where

Sk = {(πA, πB) ∈ S|πA + πB = k}. Obviously, the probability of picking two points in the same Sk

is zero, since the index k is a continuum.
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(C) If one randomly picks a continuum of points, for example circle an area in S, one will with

positive probability circle points (πA, πB) that produce the same price ratio.

6.3.2 Partial leakage with constant absolute risk aversion

Solution 6.3.2.1.

(A) Let Σnn = [cov(R + εi, R + εj)], Σ1n = (cov(R,R + ε1), ..., cov(R,R + εn)) = (σ2, ..., σ2) and

m− µ a vector of length n with entries mi − µ. A standard result for multivariate normal random

variables implies that

E[R|m1, ...,mn] = µ+ Σ1nΣ−1nn(m− µ).

Observe that Σnn is a matrix with diagonal entries σ2+σ2
ε and off-diagonal entries σ2. By symmetry,

the inverse of Σnn will also be of this form. This implies that Σ1nΣ−1nn will be a vector with all entries

the same, say, β. Then

E[R|m1, ...,mn] = µ+ β(
∑
i

mi − nµ) = (1− βn)µ+ βn
m1 + ...+mn

n
.

(B) Suppose there are n insiders and m outsiders. Then it follows from (6.3.5) that

n∑
i=1

E[R|mi]− P
Ai Var(R|mi)

+

m∑
i=1

µ− P
Aiσ2

= Q2, (5)

where

E[R|mi] =
σ2
ε

σ2 + σ2
ε

µ+
σ2

σ2 + σ2
ε

mi

Var[R|mi] =
σ2σ2

ε

σ2 + σ2
ε

.

Plugging into (5) and rearranging

P

(
n(σ2 + σ2

ε )

σ2σ2
ε

+
m

Aiσ2

)
=

n

Aiσ2

1

Aiσ2
ε

n∑
i=1

mi +
mµ

Aiσ2
−Q2.

Hence P is a function of
∑
imi.

If every insider receives (m1, ...,mn), then equation (6.3.5) becomes

n∑
i=1

E[R|m1, ...,mn]− P
Ai Var(R|m1, ...,mn)

+

m∑
i=1

µ− P
Aiσ2

= Q2.

By (A), the equilibrium price P is still linear in
∑
mi,
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(C) Suppose k out of n insiders purchase information. Then if one additional insider buys information

he loses c units of riskless asset, but he can purchase the risky asset with E[R|m1, ...,mk+1],Var[R|m1, ...,mk+1]

under the equilibrium price P (m1, ...,mk+1). If the expected equilibrium price of the risky asset rises,

then there will be a trade-off. Hence one may guess that there is an optimal k.

(D) Insiders now have different incentives to purchase information. If differences in risk aversion are

small, then the answer will not differ much from that in (C).
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